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Abstract 

The goal of the investigations was to evaluate the dynamical properties of air gauges in order to exploit them in 
such industrial applications as in-process control, form deviation measurement, dynamical measurement. As an
important parameter, the time response was analyzed theoretically and experiments were performed in order to
verify the proposed calculation model. The analyzed air gauges were applied in the devices for non-contact 
measurement of roundness and cylindricity, as well as in the contour and waviness measurement device.
Because of evident physical conditions of experiments, the input signal should not be treated as an orthogonal 
step, but as a quasi-trapezoidal step which could be approximated in simulations as a trapezoidal one. The time
response indicates that the air gauges with small measuring chambers should be treated as first-order dynamic 
systems. 
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1. Introduction  

 
After a decade of some declination in air gauge application, they are again delivered by 

most of the measuring tool producers, and again they became a subject of scientific 
interest [1] The dynamical properties of air gauges are important for metrology, because 
they are applied in systems of in-process control (dynamical measurement) [2] and in 
measuring automatons (quick measurement) [3]. Recently, some of companies offer 
pneumatic devices for non-contact measurement of form deviations like runout, 
roundness, straightness and so on. Such a measurement deals with the input signal 
changing in time. In such conditions, perfect reproduction of the input signal is not 
possible and some dynamic error is inevitable.  

Typical air gauges with large measuring chambers (several hundreds of cm3) present 
dynamic characteristics with a step response time of tens of seconds [4]. An additional 
problem is with the inner volume of the pressure sensing part which has its own inertia and 
delay time [5]. Nowadays, however, innovative air gauges have their measuring chamber 
volumes reduced, and the sensing part consists of piezoresistive pressure transducers built 
into the measuring chamber [6]. Because of the very small inner volume of the piezoresistive 
transducers and their short response time (according to [7], ca. 0.1 ms), such a solution 
definitely improves the dynamic characteristics of the air gauge. Instead of tens of seconds, 
the time constant of the air gauge could reach down the value of 0.002-0.025 s, dependent on 
the configurations of the air gauges (diameters of the inlet and measuring nozzles) and on the 
measuring chamber volume [8]. Such kind of air gauges with minimized measuring chambers 
and reduced sensing part volume are the subject of the present study. 

 
 



2. Industrial applications 
 
Advances in the capability and cost-effectiveness of computer equipment mean that 

information within measuring systems is generally processed by computer equipment and 
analyzed and designed by standard information technology methods. Measurement science 
has thus become closely associated with computer, information, control and systems science 
[9]. The non-contact measurement with air gauges in dynamic conditions takes place in the 
various devices for form deviation and waviness analysis. In Fig. 1, there is an example of the 
measurement with a Hommel Etamic probing head (a) and a presentation of the results (b) 
after computer data processing, like eccentricity and roundness deviation. Proper dynamic 
characteristics of the applied air gauge should ensure an acceptably low level of dynamic 
error of measurement. 

 

 
 

Fig. 1. Example of roundness measurement with a Hommel Etamic probing head (a) and a presentation of the 
results (b). 

 
In other applications the linear profile underwent measurement with an air gauge, and here 

too, dynamic properties of the gauge could affect the results of measurement. At present, in 
the Division of Metrology and Measurement System (Poznan University of Technology) 
investigations are directed to solve a problem of non-contact measurement for the wood 
industry. For that purpose, a typical air gauge is placed into the frame shown in  Fig. 2. The 
movement of the air gauge over the measured surface in being controlled by an external 
computer which simultaneously registers the measuring signal correlated with the position of 
the gauge. The device could be also equipped with an autonomous microprocessor and work 
independently, with the option of subsequent data transmission to the Quality Control System. 
At present, the device is under metrological tests and accuracy analysis.  

 

  
 

Fig. 2. Air gauge in the scanning device for contour and waviness measurement. 

An example of  roughness measurement with the pneumatic device is shown in Fig. 3. The 
set of roughness standards with known Ra parameter underwent the roughness measurement 



with an air gauge, as well as with a typical Perthen S8P roughness measurement device. The 
results of reference measurement with Perthen S8P are presented in Fig. 4.  

 

 
 

Fig. 3. Report on measurement of roughness standard (Ra=6.3) with a pneumatic device [10]. 
 

 
 

Fig. 4. Results for the same roughness standard obtained from Perthen S8P [10]. 
 
The profile obtained from the pneumatic device had a too large sampling step (0.1 s) that 

caused inaccurate repeatability. Nevertheless, the values of main parameters do not differ too 
much. During the measurement of a wooden surface, the sampling frequency was 15.625 Hz, 
which combined with linear movement of the stylus as small as 12 µm/s enabled a proper 
record and interpretation of the obtained profile [10].  

Similarly, air gauges are the sensing elements in non-contact profile measurement in the 
motor industry. Fig. 5 presents an example of such a measurement. Here, the measuring head 
is equipped with a small motor which moves the air gauge along the measured profile. As a 
result, a profile is obtained which is the basis for calculation of non-linearity. The results are 
presented both as a graph and as numbers and may be further processed by the computer.  

 
 

 
 

Fig. 5. Profile linearity measurement [11]. 



3. Experimental setup 
 
In all the above mentioned applications, the dynamical properties of the air gauges are the 

crucial issue. To examine the dynamic behavior of a measurement system, several standard 
input signals are used, like Dirac’s pulse δ(t), unit step function (1(t) – sudden change of the 
input signal from zero to maximal value), linear rising function, orthogonal step function or 
sine input [12]. The sine input is considered the most easy to generate, so it is commonly used 
[13]. There are also some nontypical input signals applied in order to emphasize a chosen 
criterion of the dynamic error [14]. However, in most cases the sine or step input signal is 
being applied [15]. 

The investigations on the sine function response were described in [8], but an initial 
analysis of the step responses of air gauges [16] revealed that the air gauge dynamics depends 
on the actual pressure in the measuring chamber. Moreover, the falling pressure in the 
chambers generated a different time constant than a rising one, which is not deductible in the 
sine input investigations. Thus, additional investigations on the step response seemed to be 
needed. 

 Models of the air gauge with exchangeable inlet (dw) and outlet (dp) nozzles were prepared 
for the investigations in order to obtain various sensitivities and measuring ranges of the 
examined gauges. Investigations on the dynamic characteristics of the air gauges have been 
performed with the following equipment shown in Fig 6, specially designed to generate the 
step input signal [17]. Fed with the pressure pz, the air gauge is placed in front of the moving 
table with a step height of ∆s. It is sensitive to the changes of the slot width s, and responses 
with changes of the back-pressure pk. When the table moves rapidly, it causes a quick change 
of the slot width s and causes a fall or rise of the back-pressure pk, dependent on the direction 
of movement. The registered responses underwent processing. 

 

 
 

Fig. 6. The experimental setup for step response investigations: a) scheme, b) view [17]. 
 
In fact, the step change of the slot width does not generate a step change of the input 

signal, and therefore it is impossible to apply the typical evaluation method based on a step 
response graph [18]. Because of the limited velocity of the moving table (v=2 m/s), the input 
signal is rather a trapezoidal than step function. It could be seen in Fig. 7, where the initial 
(smaller) slot width is marked sp, the final one sk, and the distance between the inner edge of 
the measuring nozzle projected to the flapper surface and the edge of the step is marked x. 
Lengths lk and lp mean the lengths of the circle parts corresponding with the final slot sk and 
the initial one sp respectively.  

In this way, the side cylinder surface which is the air outflow surface in that experiment, 
should be calculated as follows:  



                                                         A=Ap+Ak=lpsp+lksk                                                          (1) 
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it could be written in another way: 
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Fig. 7. Area between the measuring nozzle and the flapper surface with the step: a) profile view, b) top view, 
c) 3D view. 

 
Here, the relation between the final circle part length lk and the outflow surface A is 

described. Taking the following relations into consideration: 
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Hence, putting the last relation into  formula (2), it could be written: 
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From formula (5) the values of actual outflow surface A can be calculated for each 

displacement x (Fig. 8a) or time (Fig. 8b). In Fig. 8, there are graphs of the surface A 
calculated for the air gauge with a measuring nozzle dp = 1.200 mm, moving table velocity 
v = 2 m/s, and sp = 0.061 mm, sk = 0.183 mm. 



In that case, the distance x will be passed by the moving table in time t = 0.6 ms, and that is 
the time when the initial slot sp is fully replaced by the final slot sk, and the outflow surface 
becomes Ak instead of Ap. The analysis proved that such a signal could be successfully treated 

as a trapezoidal one, because the non-linearity δnl = %100
max

max ×
∆

∆−∆

A
AA lin  is smaller than 10% 

in any configuration of the air gauge. Fig. 8c shows the difference between ∆A (change of the 
outlet surface A during the experiment) and its linear value ∆Alin, which should be generated 
for a trapezoidal input signal. In order to compare the behavior of the various nozzle 
diameters, the displacement 2x in the graphs is related to its maximal value dp. 

 
a) b) c) 

 
 

Fig. 8. Graphs of the outflow surface A dependent on: a) displacement x, b) time t; c) graphs of the outflow 
surface ∆A for different measuring nozzles dp. 

 
4. Approximation of the trapezoidal step response 
 

A quasi-trapezoidal step input generates a response of the air gauge in terms of time. Fig. 9 
presents the registered pressure changes in the measuring chamber of the gauge with a 
measuring nozzle dp=1.200 mm, inlet nozzle dw=1.000 mm and the model measuring chamber 
of length l = 20 mm and diameter d = 8 mm. The graph deals with the table movement 
direction shown in Fig. 7, which causes the increase of the slot width and the fall of back-
pressure pk from 142.50 kPa down to 48.10 kPa. 

 

 
 

Fig. 9. Registered air gauge response to the quasi-trapezoidal input. 
 



In order to approximate this kind of response, the algorithm proposed by Findeisen [19] 
was implemented. It assumes that the response h(t) could be calculated step by step from the 
formula: 

                                                          )()()( 1tthtxth −+= ,                                                 (6) 
  

where t1 is the rising time of input value. 
Before t reaches the value of t1, the functions x(t)and h(t) are identical. For the next points, 

to the function x(t) the values of h taken from previous time moments should be added. When 
the input signal is a trapezoidal step, the relation between the functions x(t) and h(t) is 
following: 
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That means that the differential of the received function x(t) has identical properties like an 

orthogonal step response function with the same height and lasting for t1. Hence, it is possible 
to calculate it from formula (6). The result of the approximation with the above algorithm is 
presented in Fig. 10. The investigated air gauge is the same as in the case of Fig. 9, but the 
response is represented as h(t). 

 
 

 
 

Fig. 10. Graphs of the simulated and experimental trapezoidal step response of the air gauge. 
 
It is seen that the difference between the approximated and experimental functions of a 

trapezoidal step response is small (ca. 3%) and appears mainly in the first two milliseconds. 
The largest values of the differences lie in the area of h(t) close to 0.1 and 0.9 which 
corresponds with the maximal non-linearity of the quasi-trapezoidal signal δnl (Fig. 8c). The 
determined response time was T = 4 ms. The experiments and simulations proved that after 
the input signal is considered as a quasi-trapezoidal one, the air gauge with a small measuring 
chamber could be treated as a first-order dynamic system. 

 
 



5. Falling and rising pressure 
 

Since the measuring chamber in dynamic conditions is being filled through the inlet nozzle 
dw and emptied through the flapper nozzle area determined by the measuring nozzle dp and the 
slot width s, it should be expected that the falling and rising pressure would reveal different 
dynamic properties. Indeed, such results were obtained and presented in Fig. 11. In order to 
emphasize the difference, both responses are represented as h(t). Approximated time constants 
are T=0.030 s for the rising pressure and T=0.023 s for the falling one with an error of 10%. 
Calculated as 1/3 of the setting time, the time constant would be 0.025 and 0.017 s 
respectively. These results indicate the need of better approximation of the step response. 

 
 

  
 

Fig. 11. Time responses of an air gauge with dp = 1.2 and dw = 0.7 mm for rising (left) and falling (right) back-
pressure. 

 
Moreover, study on the flow-through models have led to the conclusion that the process of 

emptying of the vessel with pressured gas does not run with the same time constant, but its 
value depends on the pressures relationship [20]: 
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where: 
− K – factor of proportionality; 
− pa, p0 – atmospheric pressure and initial pressure in the vessel, respectively. 

It was proved experimentally that the time constant was pressure-dependent and became 
smaller with pressures closer to the atmospheric pressure, in subsequent moments of  time. 

Taking that into consideration, as well as based on the proved first-order response, a new 
series of approximations was performed. Still using the function: 
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the values of time constant T were recalculated for each subsequent moment according to the 
actual back-pressure, and treating the initial period of few milliseconds as the time when the  
trapezoidal step is rising. Fig. 12 presents the obtained results for falling pressure. In that 
case, the change of the time constant is small (within 1 ms) so it could be omitted, and T 
could be assumed T = 16.8 ms for every value of pk.  

 



 
 

Fig. 12. Approximation of time response of an air gauge for falling back-pressure. 
 
On the other hand, the dynamics of rising pressure is much more dependent on the actual 

back-pressure pk, as  seen in Fig. 13. 
 

 
 

Fig. 13. Approximation of time response of an air gauge for rising back-pressure. 
 
Approximation of time response shown in Fig. 13 with back-pressure dependent time 

constant T = f(pk) is much closer to the experimental graph, and the error of approximation is 
ca. 3% (compared to 10% in case of approximation with T=0.030 s). Indeed, the values of T 
obtained previously by other methods are all true, but they correspond with different ranges of 
the back-pressure. 

In order to describe the pressure-dependence of the time constant, the function T = f(pk) 
could be linearized and be written in the form of y = ax + b. In the case of Fig. 13, the 
function appears as follows: 

 T = -0.23pk + 56.28.                                                       (11) 
 
Such form of the function is very practical, because in an industrial application the 

operator can easily put the required working back-pressure pk in kPa and know what the 
corresponding value of time constant T in milliseconds is.  Table 1 presents such functions for 
several air gauges with measuring nozzle dp = 1.2 mm, but with different inlet nozzles dw and 
measuring chambers Vk. The formulas cover the linear area of the functions of pk = f(s), which 
is for gauges #1 and #2 from 117 kPa up to 142 kPa, and for gauges #3 and #4 from 73 kPa 
up to 138 kPa.  Additionally, the time constant obtained from a sine input response Tsin is 
given for each air gauge. 

The sets no. 1 and 2 are high-sensitivity air gauges with a multiplication of 0.88 kPa/µm. 
Their time constants are very different for falling and rising pressure. In fact, the functions 



T = f(pk) for different measuring chambers are closer to one another than functions for falling 
and rising pressure for the same chamber, even though the chamber volumes differ ten times. 
In case of low-sensitivity air gauges (sets no. 3 and 4 with multiplication of 0.15 kPa/µm), the 
differences between T of falling and rising back-pressure are not too large. Generally, the 
declination coefficient of the function T = f(pk) is larger for rising pressures, and it is always 
greater for larger chambers. 

 
Table 1. The functions T = f(pk) for several chosen air gauges. 

# dp [mm] dw [mm] Vk [cm3] T(f)- falling  pk [kPa] T(r) - rising pk [kPa] Tsine [ms] 
1. 1.200 0.625 0.402 T = -0.025pk + 5.684 T = -0.189pk + 42.254 9 
2. 1.200 0.625 3.921 T = -0.080pk + 13.883 T = -0.261pk + 45.160 20 
3. 1.200 1.200 0.402 T = -0.010pk + 3.225 T = -0.009pk + 3.198 2 
4. 1.200 1.200 3.921 T = -0.026pk + 8.661 T = -0.030pk + 10.240 5 

 
 
6. Practical recommendations 
 

Air gauges are commonly used for in-process measurement, where they measure the 
changing-in-time dimensions. Basically, the measured dimension is going down, as  shown in 
Fig.14, as the cutting tool is working. In a typical non-contact air gauge, a smaller dimension 
corresponds to a wider slot width s, and in consequence, with smaller back-pressure pk, as it is 
seen in static characteristics (Fig. 15). In the beginning of the cutting process, the workpiece 
has its largest diameter, which results in the smallest slot s1. At the end of the process, the slot 
goes closer to the maximal value s3 within the proportional area of the air gauge static 
characteristics. Hence, in most practical applications with unsteady states, one deals with 
falling back-pressure in the measuring chamber of the air gauge. 

 

 
 

Fig. 14. In-process measurement with hydraulic correction of  the cutting tool position [21]. 
 
When determining the response time of the air gauge, it seems natural to point out the 

average value of the time constant. However, in applications like the one presented in Fig. 14, 
the most responsible part of the measurement process is performed when the dimensions are 
smallest, i.e. close to the largest slot width s3. Thus, since it is known that the time constant is 
the greatest in this very range of the corresponding back-pressures, the projected air gage 
should be oriented on the best functionality in this area. Moreover, in such application only 
the response time for falling pressure is of extreme interest to the operator. 



 
 

Fig. 15. Example of static characteristics of the air gauge. 
 
That is not the case in other applications like roundness or profile measurement with air 

gauge. Here, the dynamic calibration with sine input provides better results than the step 
response analysis, because typical step changes of dimensions rather do not appear in such 
measurements. The time constant obtained from the amplitude-frequency analysis described 
in [8] corresponds with real conditions of the air gauge work. 

 
7. Conclusions 
 

The dynamical characteristics of an air gauge should be examined, and measures 
undertaken to minimize their influence on the measurement results. In many industrial 
applications, the measured value is time-dependent, and a dynamic error is inevitable.  

In order to analyze the step response of the air gauges designed to work in dynamic 
conditions, an investigations set was built and its inaccuracy of step input generation 
underwent an analysis. As a result, the difference between the obtained quasi-trapezoidal step 
response and the simulated one was ca. 3%.  

The investigations performed with the air gauges proved that the time constant is 
dependent on actual back-pressure and is changing during the setting time. The function 
T = f(pk) is almost linear and its declination depends on the sensitivity of the air gauge and on 
the volume of the measuring chamber. 

In industrial applications, before the metrological analysis of time response of the air 
gauge, its real work conditions should be taken into consideration. In case of in-process 
control, when the back-pressure falls during the measurement process, the step response for 
falling pressure should be analyzed, especially for its smaller values. On the other hand, when 
a profile or roundness is to be measured, rather the sine function response should be analyzed. 
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